Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Infect Dis ; 227(12): 1343-1347, 2023 06 15.
Article in English | MEDLINE | ID: covidwho-2222658

ABSTRACT

From 2 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) household transmission studies (enrolling April 2020 to January 2022) with rapid enrollment and specimen collection for 14 days, 61% (43/70) of primary cases had culturable virus detected ≥6 days post-onset. Risk of secondary infection among household contacts tended to be greater when primary cases had culturable virus detected after onset. Regardless of duration of culturable virus, most secondary infections (70%, 28/40) had serial intervals <6 days, suggesting early transmission. These data examine viral culture as a proxy for infectiousness, reaffirm the need for rapid control measures after infection, and highlight the potential for prolonged infectiousness (≥6 days) in many individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Tennessee/epidemiology , Family Characteristics , California/epidemiology
2.
Clin Infect Dis ; 75(10): 1698-1705, 2022 Nov 14.
Article in English | MEDLINE | ID: covidwho-2116480

ABSTRACT

The novel coronavirus pandemic incited unprecedented demand for assays that detect viral nucleic acids, viral proteins, and corresponding antibodies. The 320 molecular diagnostics in receipt of US Food and Drug Administration emergency use authorization mainly focus on viral detection; however, no currently approved test can be used to infer infectiousness, that is, the presence of replicable virus. As the number of tests conducted increased, persistent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA positivity by reverse-transcription polymerase chain reaction (RT-PCR) in some individuals led to concerns over quarantine guidelines. To this end, we attempted to design an assay that reduces the frequency of positive test results from individuals who do not shed culturable virus. We describe multiplex quantitative RT-PCR assays that detect genomic RNA (gRNA) and subgenomic RNA (sgRNA) species of SARS-CoV-2, including spike, nucleocapsid, membrane, envelope, and ORF8. Viral RNA abundances calculated from these assays were compared with antigen presence, self-reported symptoms, and culture outcome (virus isolation) using samples from a 14-day longitudinal household transmission study. By characterizing the clinical and molecular dynamics of infection, we show that sgRNA detection has higher predictive value for culture outcome compared to detection of gRNA alone. Our findings suggest that sgRNA presence correlates with active infection and may help identify individuals shedding culturable virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , RNA, Viral/genetics , RNA, Viral/analysis , Self Report , Longitudinal Studies , RNA, Guide, Kinetoplastida , COVID-19/diagnosis
3.
Nat Commun ; 13(1): 4350, 2022 07 27.
Article in English | MEDLINE | ID: covidwho-1960369

ABSTRACT

The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in the emergence of new variant lineages that have exacerbated the COVID-19 pandemic. Some of those variants were designated as variants of concern/interest (VOC/VOI) by national or international authorities based on many factors including their potential impact on vaccine-mediated protection from disease. To ascertain and rank the risk of VOCs and VOIs, we analyze the ability of 14 variants (614G, Alpha, Beta, Gamma, Delta, Epsilon, Zeta, Eta, Theta, Iota, Kappa, Lambda, Mu, and Omicron) to escape from mRNA vaccine-induced antibodies. The variants show differential reductions in neutralization and replication by post-vaccination sera. Although the Omicron variant (BA.1, BA.1.1, and BA.2) shows the most escape from neutralization, sera collected after a third dose of vaccine (booster sera) retain moderate neutralizing activity against that variant. Therefore, vaccination remains an effective strategy during the COVID-19 pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Neutralization Tests , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Vaccines, Synthetic , mRNA Vaccines
4.
Nature ; 605(7911): 640-652, 2022 05.
Article in English | MEDLINE | ID: covidwho-1773987

ABSTRACT

The global emergence of many severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants jeopardizes the protective antiviral immunity induced after infection or vaccination. To address the public health threat caused by the increasing SARS-CoV-2 genomic diversity, the National Institute of Allergy and Infectious Diseases within the National Institutes of Health established the SARS-CoV-2 Assessment of Viral Evolution (SAVE) programme. This effort was designed to provide a real-time risk assessment of SARS-CoV-2 variants that could potentially affect the transmission, virulence, and resistance to infection- and vaccine-induced immunity. The SAVE programme is a critical data-generating component of the US Government SARS-CoV-2 Interagency Group to assess implications of SARS-CoV-2 variants on diagnostics, vaccines and therapeutics, and for communicating public health risk. Here we describe the coordinated approach used to identify and curate data about emerging variants, their impact on immunity and effects on vaccine protection using animal models. We report the development of reagents, methodologies, models and notable findings facilitated by this collaborative approach and identify future challenges. This programme is a template for the response to rapidly evolving pathogens with pandemic potential by monitoring viral evolution in the human population to identify variants that could reduce the effectiveness of countermeasures.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Biological Evolution , COVID-19 Vaccines , Humans , National Institute of Allergy and Infectious Diseases (U.S.) , Pandemics/prevention & control , Pharmacogenomic Variants , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , United States/epidemiology , Virulence
5.
Clin Infect Dis ; 73(6): e1348-e1355, 2021 09 15.
Article in English | MEDLINE | ID: covidwho-1479943

ABSTRACT

BACKGROUND: Real-time reverse transcription polymerase chain reaction (rRT-PCR) and antigen tests are important diagnostics for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Sensitivity of antigen tests has been shown to be lower than that of rRT-PCR; however, data to evaluate epidemiologic characteristics that affect test performance are limited. METHODS: Paired mid-turbinate nasal swabs were collected from university students and staff and tested for SARS-CoV-2 using both Quidel Sofia SARS Antigen Fluorescent Immunoassay (FIA) and rRT-PCR assay. Specimens positive by either rRT-PCR or antigen FIA were placed in viral culture and tested for subgenomic RNA (sgRNA). Logistic regression models were used to evaluate characteristics associated with antigen results, rRT-PCR cycle threshold (Ct) values, sgRNA, and viral culture. RESULTS: Antigen FIA sensitivity was 78.9% and 43.8% among symptomatic and asymptomatic participants, respectively. Among rRT-PCR positive participants, negative antigen results were more likely among asymptomatic participants (odds ratio [OR] 4.6, 95% confidence interval [CI]: 1.3-15.4) and less likely among participants reporting nasal congestion (OR 0.1, 95% CI: .03-.8). rRT-PCR-positive specimens with higher Ct values (OR 0.5, 95% CI: .4-.8) were less likely, and specimens positive for sgRNA (OR 10.2, 95% CI: 1.6-65.0) more likely, to yield positive virus isolation. Antigen testing was >90% positive in specimens with Ct values < 29. Positive predictive value of antigen test for positive viral culture (57.7%) was similar to that of rRT-PCR (59.3%). CONCLUSIONS: SARS-CoV-2 antigen test advantages include low cost, wide availability and rapid turnaround time, making them important screening tests. The performance of antigen tests may vary with patient characteristics, so performance characteristics should be accounted for when designing testing strategies and interpreting results.


Subject(s)
COVID-19 , SARS-CoV-2 , Antigens, Viral , Humans , RNA , Reverse Transcriptase Polymerase Chain Reaction , Reverse Transcription , Sensitivity and Specificity , Universities
6.
Emerg Infect Dis ; 27(5): 1380-1392, 2021 05.
Article in English | MEDLINE | ID: covidwho-1202277

ABSTRACT

Co-infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other viruses has been reported. We evaluated cell lines commonly used to isolate viruses and diagnose related diseases for their susceptibility to SARS-CoV-2. Although multiple kidney cell lines from monkeys were susceptible to SARS-CoV-2, we found many cell types derived from humans, dogs, minks, cats, mice, and chicken were not. We analyzed MDCK cells, which are most commonly used for surveillance and study of influenza viruses, and found that they were not susceptible to SARS-CoV-2. The low expression level of the angiotensin converting enzyme 2 receptor and lower receptor affinity to SARS-CoV-2 spike, which could be overcome by overexpression of canine angiotensin converting enzyme 2 in trans, strengthened the cellular barrier to productive infection. Moreover, a D614G mutation in the spike protein did not appear to affect SARS-CoV-2 cell tropism. Our findings should help avert inadvertent propagation of SARS-CoV-2 from diagnostic cell lines.


Subject(s)
COVID-19 , Influenza, Human , Animals , Cats , Cell Line , Dogs , Humans , Mice , Peptidyl-Dipeptidase A , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
7.
Sci Adv ; 6(39)2020 09.
Article in English | MEDLINE | ID: covidwho-796906

ABSTRACT

Detection of viruses is critical for controlling disease spread. Recent emerging viral threats, including Zika virus, Ebola virus, and SARS-CoV-2 responsible for coronavirus disease 2019 (COVID-19) highlight the cost and difficulty in responding rapidly. To address these challenges, we develop a platform for low-cost and rapid detection of viral RNA with DNA nanoswitches that mechanically reconfigure in response to specific viruses. Using Zika virus as a model system, we show nonenzymatic detection of viral RNA with selective and multiplexed detection between related viruses and viral strains. For clinical-level sensitivity in biological fluids, we paired the assay with sample preparation using either RNA extraction or isothermal preamplification. Our assay requires minimal laboratory infrastructure and is adaptable to other viruses, as demonstrated by quickly developing DNA nanoswitches to detect SARS-CoV-2 RNA in saliva. Further development and field implementation will improve our ability to detect emergent viral threats and ultimately limit their impact.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , DNA, Single-Stranded/genetics , Electrophoresis, Agar Gel/methods , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Sequence Analysis, RNA/methods , Base Sequence , COVID-19 , Cell Line, Tumor , Coronavirus Infections/virology , Dengue/diagnosis , Dengue/virology , Dengue Virus/genetics , Electrophoresis, Agar Gel/economics , Humans , Limit of Detection , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Saliva/virology , Sequence Analysis, RNA/economics , Zika Virus/genetics , Zika Virus Infection/diagnosis , Zika Virus Infection/virology
SELECTION OF CITATIONS
SEARCH DETAIL